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High dimensional model representation (HDMR) is a general set of quantitative model as-
sessment and analysis tools for improving the efficiency of deducing high dimensional input–
output system behavior. For a high dimensional system, an output f (x) is commonly a func-
tion of many input variables x = {x1, x2, . . . , xn} with n ∼ 102 or larger. HDMR describes
f (x) by a finite hierarchical correlated function expansion in terms of the input variables. Var-
ious forms of HDMR can be constructed for different purposes. Cut- and RS-HDMR are two
particular HDMR expansions. Since the correlated functions in an HDMR expansion are op-
timal choices tailored to f (x) over the entire domain of x, the high order terms (usually larger
than second order, or beyond pair cooperativity) in the expansion are often negligible. When
the approximations given by the first and the second order Cut-HDMR correlated functions
are not adequate, this paper presents a monomial based preconditioned HDMR method to re-
present the higher order terms of a Cut-HDMR expansion by expressions similar to the lower
order ones with monomial multipliers. The accuracy of the Cut-HDMR expansion can be sig-
nificantly improved using preconditioning with a minimal number of additional input–output
samples without directly invoking the determination of higher order terms. The mathemat-
ical foundations of monomial based preconditioned Cut-HDMR is presented along with an
illustration of its applicability to an atmospheric chemical kinetics model.

1. Introduction

Many problems in science and engineering reduce to the need for finding an effi-
ciently constructed map of the relationship between sets of high dimensional input and
output system variables. For example, a key output variable of photochemical air quality
simulation models is the peak ozone concentration in a region, and the input variables are
the chemical, physical and radiative factors which effect the ozone concentration. The
system may be described by a mathematical model (e.g., typically a set of differential
equations), where the input variables might be specified initial and boundary conditions
as well as functions residing in the model, and the output variables would be drawn from
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the solution to the model or a functional of the solution. The input–output behavior may
also be based on observations in the laboratory or field where a mathematical model
cannot readily be constructed for the system. In this case the input consists of the labo-
ratory (control) variables and the output(s) is the observed system response. Regardless
of the circumstances, the input is often very high dimensional with many variables even
if the output is only a single quantity. We refer to the input variables collectively as
x = {x1, x2, . . . , xn} with often n ∼ 102–103 or more, and the output as f (x). For sim-
plicity in the remainder of the paper and without loss of generality, we shall refer to the
system as a model regardless of whether it involves modeling, laboratory experiments or
field studies.

An important point to understand is that without the possibility of simplification,
the general high dimensional representation problems posed by many realistic systems
are of exponential difficulty (i.e., the effort grows exponentially with dimension n). This
comment may be understood from the simple consideration of attempting to deduce
the input–output mapping via sampling by s points in each of the n input variables and
performing the corresponding model runs. A full sampling therefore calls for∼sn model
runs, which would be clearly out of the question for many realistic cases (e.g., s ∼ 10
and n ∼ 102–103 or more). This view is generally overly pessimistic as evident from
various Monte Carlo statistical analyses where typically far more modest numbers of
computational runs or experiments are performed to achieve convergent results. Such
behavior implies that a much more economic sampling may be sufficient.

A general set of quantitative model assessment and analysis tools, termed High
Dimensional Model Representation (HDMR), have been introduced [1–4] for improving
the efficiency of deducing high dimensional input–output system behavior. The concepts
behind HDMR aim to capitalize on the latter observations that realistic physical systems
generally do not call for an exponentially growing number of samples to prescribe their
input–output relationships. As the effect of inputs upon the output can be independent
and cooperative, it is natural to express the model output f (x) as a finite hierarchical
correlated function expansion in terms of the input variables:

f (x)= f0 +
n∑

i=1

fi(xi)+
∑

1�i<j�n
fij (xi, xj )+

∑
1�i<j<k�n

fijk(xi, xj , xk)

+ · · · +
∑

1�i1<···<il�n
fi1i2...il (xi1 , xi2 , . . . , xil )+ · · ·

+ f12...n(x1, x2, . . . , xn), (1)

where f0 is a constant representing the mean response to f (x), and fi(xi) gives the in-
dependent contribution to f (x) by the ith input variable acting alone, fij (xi, xj ) gives
the pair correlated contribution of the input variables xi and xj , etc. The last term
f12...n(x1, x2, . . . , xn) contains any residual nth correlated contributions of all input vari-
ables. The above HDMR expansion has a finite number of terms and is always ex-
act. Other expansions have been suggested [5], but they commonly have an infinite
number of terms and all the terms are some specified functions (e.g., Hermite polyno-
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mials). A critical feature of the HDMR expansion is that its component functions f0,
fi(xi), fij (xi, xj ), . . . are optimal choices tailored to f (x) over the entire domain of x,
and the high order terms in the expansion are generally expected to be negligible. In
order to appreciate the new features of HDMR introduced in this paper, a brief summary
of the relevant aspects of HDMR will be given in the remainder of this section.

The basic conjecture underlying HDMR is that the component functions in equa-
tion (1) arising in typical real problems are not likely to exhibit high order l (e.g., a
term like fij (xi, xj ) is of the second order, l = 2) cooperativity among the input vari-
ables such that the significant terms in the HDMR expansion are expected to satisfy the
relation: l � n for n	 1, i.e., very often the first or the second order approximation

f (x) ≈ f0 +
n∑

i=1

fi(xi)+
∑

1�i<j�n
fij (xi, xj ) (2)

provides a satisfactory result for f (x) in many high dimensional systems. Broad evi-
dence from statistics supports this conjecture where it is rarely found that more than in-
put variable covariance (i.e., variable pair cooperativity) significantly arises. HDMR at-
tempts to exploit this observation to efficiently determine high dimensional input–output
system mapping. The presence of only low order variable cooperativity does not neces-
sarily imply a small set of significant variables nor does it limit the non-linear nature of
the input–output relationship.

This valuable property of low order input cooperativity for high dimensional sys-
tems may be utilized only if a proper means for calculating the HDMR component func-
tions can be found. In order to do so, optimal procedures were applied for the determina-
tion of the HDMR component functions. Various forms of HDMR have been considered
with applications to several scientific problems [3,4,6–8]. This paper will focus on what
has been referred to as Cut-HDMR where the variable space is sampled in an orderly
fashion along low dimensional cuts (i.e., sub-volumes) centered at a chosen reference
point x in the space. The formulas determining the zeroth, first, second and third order
component functions for Cut-HDMR in equation (1) are as follows:

f0= f (x), (3)

fi(xi)= f
(
xi, x̄i

)− f0, (4)

fij (xi, xj )= f
(
xi, xj , xij

)− fi(xi)− fj (xj )− f0, (5)

fijk(xi, xj , xk)= f
(
xi, xj , xk, x̄ijk

)− fij (xi, xj )− fik(xi, xk)

− fjk(xj , xk)− fi(xi)− fj (xj )− fk(xk)− f0, (6)

where xi , xij and xijk are respectively x without elements xi; xi, xj ; and xi , xj , xk.
f (x) is the value of f (x) at x; f (xi, xi) is the model output with all variables evaluated
at x except for xi , etc.
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All the component functions of Cut-HDMR possess the property that they vanish
whenever any input variable in these functions takes on its corresponding value in x:

fi1i2...il (xi1 , xi2 , . . . , xil )
∣∣
xis=x̄is = 0, is ∈ {i1, i2, . . . , il}, (7)

and thus they are all mutually orthogonal under the definition

fi1i2...ip (xi1 , xi2 , . . . , xip )fj1j2...jq (xj1, xj2 , . . . , xjq )
∣∣
xis=xis = 0,

is ∈ {i1, i2, . . . , ip} ∪ {j1, j2, . . . , jq}. (8)

The component functions (i.e., fi(xi), fij (xi, xj ), . . .) of Cut-HDMR are typically pro-
vided numerically, at discrete values of the input variables xi , xj , . . . produced from
sampling the output function f (x) for employment on the right-hand side of equations
(3)–(6). Thus, numerical data tables can be constructed for these component functions,
and the value of f (x) for an arbitrary point x can be determined from these tables by
performing only low dimensional interpolation over fi(xi), fij (xi, xj ), . . . .

The component functions f0, fi(xi), fij (xi, xj ), . . . in Cut-HDMR have clear
mathematical meaning which is especially evident when f (x) can be expanded as a
convergent Taylor series at the reference point x. In the discussion here and the analysis
later in the paper, Taylor series considerations will only be used in a formal sense to
better understand the nature of HDMR; indeed, the purpose of HDMR is to circumvent
the need to use expressions with a growing or infinite number of terms. According to
the definitions given in equations (3)–(6), it is easy to prove that f0 = f (x), i.e., the
constant term of the Taylor series; the first order function fi(xi) is the sum of all the
Taylor series terms which only contain the variable xi , while the second order function
fij (xi, xj ) is the sum of all the Taylor series terms which only contain variables xi and
xj , etc. Therefore, each distinct component function of Cut-HDMR is composed of an
infinite sub-class of the full multi-dimensional Taylor series, and the sub-classes do not
overlap one another, which is the basis for the orthogonality of Cut-HDMR component
functions. The orthogonality of the component functions in HDMR may generally be
viewed from another perspective. The component functions of HDMR can be obtained
through application of a suitably defined set of linear operators ℘0, ℘i (i = 1, 2, . . . , n),
℘ij (1 � i < j � n), ℘ijk (1 � i < j < k � n), . . . :

℘0f (x)= f0, (9)

℘if (x)= fi(xi), (10)

℘ij f (x)= fij (xi, xj ), (11)

℘ijkf (x)= fijk(xi, xj , xk). (12)

It has been proved that all the operators are commutative projection operators and they
are mutually orthogonal to one another [1,2]. The basis for orthogonality of all the pro-
jectors simply comes from the fact that f0, fi(xi), fij (xi, xj ), . . . do not overlap one
another. Any set of commutative projectors generate a distributive lattice whose ele-
ments are obtained by all possible combinations (Boolean addition and multiplication)
of the projectors in the set. Any operator ℘t in the lattice provides an approximation
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℘tf (x) to the function f (x). In particular, the lattice has a unique maximal projectorM
which provides the algebraically best approximation to the functions in a linear space F
composed of all n-variable functions f (x) [9].

Each projector ℘t has its range �t which is a subspace of the linear space F . Any
function f (x) ∈ �t is invariant upon the action of ℘t , i.e.,

℘tf (x) = f (x) ∀f (x) ∈ �t. (13)

This implies that upon the action of ℘t there is no error for any function f (x) ∈ �t . The
larger the range �t is, the better approximation for F that ℘t produces. Two projectors
℘i and ℘j are mutually orthogonal, as stated by

℘i℘j = ℘j℘i = 0.

This is equivalent to

�i ∩�j = 0.

The range of the maximal projector M for the lattice generated by the mutually com-
mutative projectors {℘1, ℘2, . . . , ℘N } is the union of all the ranges �t , i.e.,

�M = �1 ∪�2 ∪ · · · ∪�N. (14)

When the projectors are mutually orthogonal, �i ∩�j = 0 for all i �= j , then

�M = �1 +�2 + · · · +�N, (15)

which is the largest invariant subspace in F among the invariant subspaces produced by
all projectors in the lattice. Therefore, the projector M provides the algebraically best
approximation for F in the lattice. As more orthogonal projectors are retained in the
set, then �M becomes larger and the resultant approximation obtained by its maximal
projectorM [9] becomes better.

For instance, if we choose the subset S1 = {℘0, ℘i (i = 1, 2, . . . , n)} of the above
mutually orthogonal projectors to generate a lattice, then its maximal projector is simply
the sum of all these projectors:

M1 = ℘0 +
n∑

i=1

℘i, (16)

and the best approximation of f (x) ∈ F by the projectors in this lattice is

f (x) ≈M1f (x)=℘0f (x)+
n∑

i=1

℘if (x)

= f0 +
n∑

i=1

fi(xi), (17)
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which is called the first order HDMR approximation for f (x). Similarly, for the subset
S2 = {℘0, ℘i (i = 1, 2, . . . , n), ℘ij (1 � i < j � n)}, the best approximation of f (x)
is given by

f (x) ≈M2f (x)=℘0f (x)+
n∑

i=1

℘if (x)+
∑

1�i<j�n
℘ijf (x)

= f0 +
n∑

i=1

fi(xi)+
∑

1�i<j�n
fij (xi, xj ), (18)

which is called the second order HDMR approximation for f (x), etc.
As S1 is a subset of S2, andM2 is the maximal projector in the lattice generated

by S2, then �M1 ⊂ �M2 and M2 is better than M1, i.e., the second order approx-
imation of HDMR is better than the first order one. In general, higher order HDMR
approximations for F are always better than lower order HDMR approximations. This
implies that adding a new orthogonal projector into a sum of orthogonal projectors al-
ways produces a new projector with the associated HDMR approximation having better
accuracy.

As argued earlier, very often the high order HDMR terms are small thereby making
low (i.e., first and second) order HDMR approximations satisfactory for practical pur-
poses. However, in some cases the first or second order HDMR approximations may not
provide satisfactory accuracy, and higher order HDMR approximations might have to be
considered. For Cut-HDMR the higher order terms demand a polynomically increasing
number of data samples. If the higher order component functions of Cut-HDMR can
be approximately represented in a similar fashion as those for the zeroth, first and sec-
ond order component functions, then higher order approximations of Cut-HDMR can
be included without dramatically increasing the number of experiments or model runs
as well as reducing computer storage requirements. One way to realize this concept is
to represent a high order Cut-HDMR component function as a sum of preconditioned
low order Cut-HDMR component functions. The preconditioning (i.e., the process of
building in expected behavior) may be accomplished by multiplying each low order
Cut-HDMR component function with a suitable known function of the remaining input
variables. For instance, a third order Cut-HDMR component function fijk(xi, xj , xk)

may be approximated as

fijk(xi, xj , xk)≈ ϕijk(xi, xj , xk)f̄0 + ϕjk(xj , xk)f̄i(xi)

+ϕik(xi, xk)f̄j (xj )+ ϕij (xi, xj )f̄k(xk)

+ϕk(xk)f̄ij (xi, xj )+ ϕj(xj )f̄ik(xi, xk)

+ϕi(xi)f̄jk(xj , xk), (19)

where ϕi(xi), ϕj (xj ), . . . , ϕijk(xi, xj , xk) are appropriate known functions (e.g., the
products of monomials (xi − bi), (xj − bj ) and (xk − bk) where the b’s are con-
stants), and f̄0, f̄i(xi), . . . , f̄jk(xj , xk) are Cut-HDMR component functions for some
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given function f̄ (x) related to f (x). To determine the preconditioned Cut-HDMR com-
ponent functions, we require that all the terms in equation (19) must be produced by
mutually orthogonal projectors which are also orthogonal to the lower order projectors
℘0, ℘i, . . . , ℘jk such that adding these new terms to the second order Cut-HDMR ap-
proximation will definitely improve its accuracy. When the functions {ϕ} are mono-
mial products, this approximation is referred to as monomial based preconditioned
Cut-HDMR, or mp-Cut-HDMR. Its theoretical foundation and an illustrative applica-
tion to an atmospheric chemical kinetics model are presented in this paper.

The paper is organized as follows. Section 2 introduces the principles of the
mp-Cut-HDMR method. All the mathematical proofs underlying the method are in the
appendix. In section 3, an atmospheric model is used for illustration. Finally, section 4
contains conclusions.

2. Principles of monomial based preconditioned Cut-HDMR

2.1. New orthogonal projectors

When f (x) is approximated by the lth order Cut-HDMR at reference point a, the
error of this approximation is the residual

rl(x)= f (x)− f0 −
n∑

i=1

fi(xi)−
∑

1�i<j�n
fij (xi, xj )− · · ·

−
∑

1�i1<···<il�n
fi1i2...il (xi1 , xi2 , . . . , xil ). (20)

As mentioned in section 1, fi1i2...il (xi1 , xi2 , . . . , xil ) is the sum of all the Taylor series
terms which only contain the variables xi1 , xi2 , . . . , xil when f (x) can be expanded as a
convergent Taylor series at point a. Since the collective Cut-HDMR component func-
tions fi1i2...is (xi1 , xi2 , . . . , xis ) (s = 0, 1, . . . , l) remove all the Taylor series terms of
f (x) with up to l variables, then rl(x) is only composed of the Taylor series terms con-
taining more than l variables.

In order to explore the contribution of the next term beyond that contained in
the HDMR expansion in equation (20) consider a subset I from the set of indices
{1, 2, . . . , n}, i.e.,

I = {i1, i2, . . . , im} ⊆ {1, 2, . . . , n}, m = l + 1, (21)

and let

xI = {xi1 , xi2 , . . . , xim}. (22)

Then rl(xI , aI ) (where aI is the a without elements {ai1 , ai2 , . . . , aim}) is the value of the
residual with all variables evaluated at a except of the elements in xI . Considering that
rl(x) may be viewed as composed of products of (xi − ai) (i = 1, 2, . . . , n), therefore
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rl(xI , aI ) only contains the Taylor series terms with the variables in xI . This implies that
rl(xI , aI ) is an mth order Cut-HDMR component function

rl
(
xI , aI

) = fi1i2...im(xi1 , xi2 , . . . , xim). (23)

The goal is finding an approximation for equation (23) with a form similar to that in
equation (19). In order to do so, it is convenient to write rl(xI , aI ) as

rl
(
xI , aI

) = ϕ(xI )
rl(xI , aI )
ϕ(xI )

= ϕ(xI )hlI
(
xI , aI

)
, (24)

where ϕ(xI ) is some specified function. If hlI (xI , aI ) can be reliably represented by
either the first or second order Cut-HDMR approximations about some suitable center,
then ϕ(xI )hlI (xI , aI ) will provide an approximation of rl(xI , aI ) having a form simi-
lar to that in equation (19). In this process we may view ϕ(xI ) as a preconditioning
function that extracts some characteristic behavior from fi1i2...im(xi1 , xi2 , . . . , xim) before
subjecting it to a Cut-HDMR approximation of low order. When ϕ(xI ) is a product of
monomials, i.e.,

ϕ(xI )=
m∏
s=1

(xis − ais ), (25)

hlI
(
xI , aI

)= rl(xI , aI )∏m
s=1(xis − ais )

, (26)

the process is referred to as monomial based preconditioning. In the following treatment,
we only consider monomial based preconditioning.

There is a family of residuals rl(xI , aI )’s with each being a function of m variables
in the Taylor series expansion of f (x) when all possible I ’s are considered, i.e., for I
and I ′, rl(xI , aI ) and rl(xI ′, aI

′
) correspond to different sets of terms in the Taylor series.

The residuals do not overlap one another, and they also do not overlap with the terms
in the Taylor series representing the lower order component functions f0, fi(xi), . . . ,
fi1i2...il (xi1 , xi2 , . . . , xil ) because all these terms have already been removed from rl(x).
The hlI (xI , aI )’s also possess this property. Hence, it is possible to create new orthogo-
nal projectors upon the hlI (xI , aI )’s.

Now we consider approximating hlI (xI , aI ) by second order Cut-HDMR at a new
reference point

b = {b1, b2, . . . , bn}. (27)

Approximation of hlI (xI , aI ) beyond second order could be considered, but practical ev-
idence indicates that the present formulation is both simple and often quite satisfactory.
To avoid a singularity in hlI (xI , aI ), choose

bi �= ai for all i, (28)

and set

bI = {bi1 , bi2 , . . . , bim}. (29)
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Then we have

hlI
(
xI , aI

)≈ f̄0 +
m∑
s=1

f̄is (xis )+
∑

1�r<s�m
f̄ir is (xir , xis )

= rl(bI , aI )∏m
s=1(bis − ais )

+
m∑
s=1

[
rl(xis ,bis

I , aI )
(xis − ais )

∏m
r=1,ir �=is (bir − air )

− rl(bI , aI )∏m
r=1(bir − air )

]

+
∑

1�r<s�m

[
rl(xir , xis ,bir is

I , aI )
(xir − air )(xis − ais )

∏m
t=1,it �=ir ,is (bit − ait )

− rl(xir ,bir
I , aI )

(xir − air )
∏m

t=1,it �=ir (bit − ait )
− rl(xis ,bis

I , aI )
(xis − ais )

∏m
t=1,it �=is (bit − ait )

+ rl(bI , aI )∏m
t=1(bit − ait )

]
. (30)

The resultant second order Cut-HDMR component functions for hlI (xI , aI ) are then
multiplied by ϕ(xI ) = ∏m

s=1(xis − ais ) in equation (24), which gives an approximate
representation for the mth order component function

fi1i2...im(xi1 , xi2 , . . . , xim)

= rl
(
xI , aI

)
=

m∏
s=1

(xis − ais )hlI
(
xI , aI

)
≈

m∏
s=1

(xis − ais )

(bis − ais )
rl
(
bI , aI

)
+

m∑
s=1

[
m∏

r=1,ir �=is

(xir − air )

(bir − air )
rl
(
xis ,bis

I , aI
)− m∏

r=1

(xir − air )

(bir − air )
rl
(
bI , aI

)]

+
∑

1�r<s�m

[
m∏

t=1,it �=ir ,is

(xit − ait )

(bit − ait )
rl
(
xir , xis ,bir is

I , aI
)

−
m∏

t=1,it �=ir

(xit − ait )

(bit − ait )
rl
(
xir ,bir

I , aI
)− m∏

t=1,it �=is

(xit − ait )

(bit − ait )
rl
(
xis ,bis

I , aI
)

+
m∏
t=1

(xit − ait )

(bit − ait )
rl
(
bI , aI

)]
, (31)
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where bit
I , bir is

I are just bI without elements bit ; bir , bis , respectively. When all possible
choices of I are considered, the collective terms give an approximation for the (l + 1)th
order component functions of the Cut-HDMR to f (x)without directly evaluating fi1i2...im
by the original formulation indicated in equations (3)–(6). This approximation is termed
as the (l + 1)th order mp-Cut-HDMR.

The resultant new functions appearing in the mp-Cut-HDMR may be obtained as
the resultant action of a set of new operators ℘̃0, ℘̃is , ℘̃ir is , i.e.,

rl
(
xI , aI

) ≈ [℘̃0 +
m∑
s=1

℘̃is +
∑

1�r<s�m
℘̃ir is

]
f (x), (32)

where

℘̃0f (x) = f̃0=
m∏
s=1

(xis − ais )

(bis − ais )
rl
(
bI , aI

)
, (33)

℘̃is f (x) = f̃is =
m∏

r=1,ir �=is

(xir − air )

(bir − air )
rl
(
xis ,bis

I , aI
)

−
m∏
r=1

(xir − air )

(bir − air )
rl
(
bI , aI

)
, (34)

℘̃ir is f (x) = f̃ir is =
m∏

t=1,it �=ir ,is

(xit − ait )

(bit − ait )
rl
(
xir , xis ,bir is

I , aI
)

−
m∏

t=1,it �=ir

(xit − ait )

(bit − ait )
rl
(
xir ,bir

I , aI
)

−
m∏

t=1,it �=is

(xit − ait )

(bit − ait )
rl
(
xis ,bis

I , aI
)

+
m∏
t=1

(xit − ait )

(bit − ait )
rl
(
bI , aI

)
. (35)

For an approximation to second order Cut-HDMR terms, m = 3 and I = {i1, i2, i3} we
have

r2
(
bI , aI

)= f
(
bi1 , bi2 , bi3 , ai1i2i3

)− f
(
bi1 , bi2 , ai1i2

)
− f

(
bi1 , bi3 , ai1i3

)− f
(
bi2 , bi3 , ai2i3

)
+ f

(
bi1 , ai1)+ f (bi2 , ai2

)+ f
(
bi3 , ai3

)− f (a), (36)

r2
(
xi1 ,bi1

I , aI
)= f

(
xi1 , bi2 , bi3 , ai1i2i3

)− f
(
xi1 , bi2 , ai1i2

)
− f

(
xi1 , bi3 , ai1i3

)− f
(
bi2 , bi3 , ai2i3

)
+ f

(
xi1 , ai1)+ f (bi2 , ai2

)+ f
(
bi3 , ai3

)− f (a), (37)
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r2
(
xi1 , xi2 ,bi1i2

I , aI
)= f

(
xi1 , xi2 , bi3 , ai1i2i3

)− f
(
xi1 , xi2 , ai1i2

)
− f

(
xi1 , bi3 , ai1i3

)− f
(
xi2 , bi3 , ai2i3

)
+ f

(
xi1 , ai1)+ f (xi2 , ai2

)+ f
(
bi3 , ai3

)− f (a). (38)

For an approximation to third order Cut-HDMR terms, m = 4 and I = {i1, i2, i3, i4} we
have

r3
(
bI , aI

)= f
(
bi1 , bi2 , bi3 , bi4 , ai1i2i3i4

)− f
(
bi1 , bi2 , bi3 , ai1i2i3

)
− f

(
bi1 , bi2 , bi4 , ai1i2i4

)− f
(
bi1 , bi3 , bi4 , ai1i3i4

)
− f

(
bi2 , bi3 , bi4 , ai2i3i4

)+ f
(
bi1 , bi2 , ai1i2

)+ f
(
bi1 , bi3 , ai1i3

)
+ f

(
bi1 , bi4 , ai1 i4

)+ f
(
bi2 , bi3 , ai2 i3

)+ f
(
bi2 , bi4 , ai2 i4

)
+ f

(
bi3 , bi4 , ai3 i4

)− f
(
bi1 , ai1

)− f
(
bi2 , ai2

)
− f

(
bi3 , ai3

)− f
(
bi4 , ai4

)+ f (a), (39)

r3
(
xi1 ,bi1

I , aI
)= f

(
xi1 , bi2 , bi3 , bi4 , ai1i2i3i4

)− f
(
xi1 , bi2 , bi3 , ai1i2i3

)
− f

(
xi1 , bi2 , bi4 , ai1i2i4

)− f
(
xi1 , bi3 , bi4 , ai1i3i4

)
− f

(
bi2 , bi3 , bi4 , ai2i3i4

)+ f
(
xi1 , bi2 , ai1i2

)+ f
(
xi1 , bi3 , ai1i3

)
+ f

(
xi1 , bi4 , ai1 i4

)+ f
(
bi2 , bi3 , ai2 i3

)+ f
(
bi2 , bi4 , ai2 i4

)
+ f

(
bi3 , bi4 , ai3 i4

)− f
(
xi1 , ai1

)− f
(
bi2 , ai2

)
− f

(
bi3 , ai3

)− f
(
bi4 , ai4

)+ f (a), (40)

r3
(
xi1 , xi2 ,bi1i2

I , aI
)= f

(
xi1 , xi2 , bi3 , bi4 , ai1i2i3i4

)− f
(
xi1 , xi2 , bi3 , ai1i2i3

)
− f

(
xi1 , xi2 , bi4 , ai1i2i4

)− f
(
xi1 , bi3 , bi4 , ai1i3i4

)
− f

(
xi2 , bi3 , bi4 , ai1i2i3i4

)+ f
(
xi1 , xi2 , ai1i2

)+ f
(
xi1 , bi3 , ai1i3

)
+ f

(
xi1 , bi4 , ai1 i4

)+ f
(
xi2 , bi3 , ai2 i3

)+ f
(
xi2 , bi4 , ai2 i4

)
+ f

(
bi3 , bi4 , ai3 i4

)− f
(
xi1 , ai1)− f (xi2 , ai2

)
−f (bi3 , ai3

)− f
(
bi4 , ai4

)+ f (a). (41)

The formulas of rl(bI , aI ), rl(xis ,bis
I , aI ) and rl(xir , xis ,bir is

I , aI ) for larger l can be read-
ily produced. Similar to second order Cut-HDMR, only one- and two-dimensional look-
up tables for rl(xis ,bis

I , aI ) and rl(xir , xis ,bir is
I , aI ) are needed for mp-Cut-HDMR taken

to second order. This behavior greatly reduces the amount of samples needed to at least
pick up a reasonable approximation to the terms beyond second order in the original
Cut-HDMR expansion.

It can be proved (see the appendix) that all the operators ℘̃0, ℘̃is and ℘̃ir is for a given
m are mutually orthogonal projectors, and orthogonal to ℘0, ℘i, ℘ij , . . . , ℘i1i2...il as well.
Then the projectors {℘} of the lth order Cut-HDMR and the new projectors {℘̃} of the
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mth order mp-Cut-HDMR together generate a larger lattice. The maximal projector of
the larger lattice is

M=℘0 +
n∑

i=1

℘i +
∑

1�i<j�n
℘ij + · · · +

∑
1�i1<···<il�n

℘i1i2...il

+
∑
I

[
℘̃0 +

m∑
s=1

℘̃is +
∑

1�r<s�m
℘̃ir is

]
(42)

and the best approximation of f (x) ∈ F in the larger lattice is

Mf (x)=℘0f (x)+
n∑

i=1

℘if (x)+
∑

1�i<j�n
℘ijf (x)+ · · · +

∑
1�i1<···<il�n

℘i1i2...il f (x)

+
∑
I

[
℘̃0f (x)+

m∑
s=1

℘̃is f (x)+
∑

1�r<s�m
℘̃ir is f (x)

]

= f0 +
n∑

i=1

fi +
∑

1�i<j�n
fij + · · · +

∑
1�i1<···<il�n

fi1i2...il

+
∑
I

[
f̃0 +

m∑
s=1

f̃is +
∑

1�r<s�m
f̃ir is

]
. (43)

For a given m, f (xis ,bis
I , aI ) and f (xir , xis ,bir is

I , aI ) are invariant to theM given
in equation (42) whenever the truncated Cut-HDMR has order l = m − 1 (see the
appendix). However, the lth order Cut-HDMR can be approximated by the combination
of the second order Cut-HDMR and the third to lth order mp-Cut-HDMR component
functions. Then a new operator

M = ℘0 +
n∑

i=1

℘i +
∑

1�i<j�n
℘ij +

l+1∑
p=3

∑
Ip

[
℘̃0 +

p∑
s=1

℘̃is +
∑

1�r<s�p
℘̃ir is

]
(44)

and the corresponding expansion

Mf (x) = f0 +
n∑

i=1

fi +
∑

1�i<j�n
fij +

l+1∑
p=3

∑
Ip

[
f̃0 +

p∑
s=1

f̃is +
∑

1�r<s�p
f̃ir is

]
(45)

may be used for the approximation of f (x). Notice that all the terms in equation (45) are
of zeroth, first and second orders. The approximation given by equation (45) can pick
up the essential features of (l + 1)th order Cut-HDMR, and may even have an accuracy
similar to that for the (l + 1)th order Cut-HDMR, but the sizes of its look-up tables are
much smaller.
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Table 1
The increasing numbers of one- and two-dimensional ranges by

adding projectors {℘̃}.
m f (xis ,bisI , aI ) f (xir , xis ,bir isI , aI )

3 3C3
n 3C3

n

4 4C4
n 6C4

n

5 5C5
n 10C5

n

m mCm
n C2

mC
m
n

2.2. Ranges of new projectors

As proved before [1,2], the range of the lth order Cut-HDMR is

�{l} =
n⋃

i=1

f
(
xi, ai

) ⋃
1�i<j�n

f
(
xi, xj , aij

) ⋃
1�i<j<k�n

· · ·
⋃

i1i2...il

f
(
xi1 , xi2 , . . . , xil , ai1 i2...il

)
. (46)

When the new orthogonal projectors {℘̃} of the mth order mp-Cut-HDMR component
functions defined in section 2.1 are added to the lth order Cut-HDMR, a new range for
each I

�{I } =
m⋃
s=1

f
(
xis ,bis

I , aI
) ⋃

1�r<s�m
f
(
xir , xis ,bir is

I , aI
)

(47)

is added to �{l} (see the appendix). The increments of the range for different m are given
in table 1, where

Cm
n =

n!
m!(n−m)! . (48)

The significance of this table can be understood by considering a case when
n = 10. The second order Cut-HDMR has 10 one variable functions f (xi, ai ) and
45 two variable functions f (xi, xj , aij ). If we add in the new projectors of the third
order (m = 3) mp-Cut-HDMR component functions, there are 10 + 3C3

10 = 10 + 360
one variable functions f (xi, ai ) and f (xis ,bis

I , aI ) and as well as 45+ 3C3
10 = 45+ 360

two variable functions f (xi, xj , aij ) and f (xir , xis ,bir is
I , aI ) for all possible I . These

additional functions composed to new lines and planes through the n = 10 dimensional
space upon which the function f (x) is exactly represented. Thus, the accuracy of the
modified second order Cut-HDMR can be dramatically improved (see section 3 below).

Compared to directly using higher order Cut-HDMR, the mp-Cut-HDMR needs
smaller tables (i.e., fewer samples). As an example, suppose that each variable
is sampled at s values. The total sampling for mth order component functions of
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Cut-HDMR is Cm
n s

m, but the mth order mp-Cut-HDMR component functions only need
Cm
n (ms + C2

ms
2) samples. The ratio is

R= Sampling of component functions of mth order mp-Cut-HDMR

Sampling of mth order component functions of Cut-HDMR

= Cm
n (ms + C2

ms
2)

Cm
n s

m
= m+ C2

ms

sm−1
, (49)

which is independent of n. For m = 3 and s = 10, R ≈ 1/3. For m = 5 and s = 10,
R ≈ 1/100. The saving is obvious.

3. Example: A photochemical box model

A zero-dimensional photochemical box model designed to treat the ozone chem-
istry in the background troposphere is being used to study three-dimensional global
chemical transport [7]. This box model consists of 63 reactions and 28 chemical species.
Using this box model the rates of ozone production P and destruction D may be calcu-
lated and incorporated into the overall model. The details of this process [7] are not
relevant here, but the box model provides a good testing ground for mp-Cut-HDMR.
The rates of ozone production P and destruction D are used as two output variables of
the box model. The input variables are month, latitude, altitude and the concentrations
of 4 precursors: H2O, CO, NOx and O3.

A tremendous amount of computational time would have to be spent to obtain the
chemical ozone production and destruction rates by directly solving the associated dif-
ferential equations at each time step of the three-dimensional model simulations. One
promising solution to lift this computational burden is to employ Cut-HDMR expan-
sions. The application of the second order Cut-HDMR for the input–output relationships
of chemical kinetics was successful in a three-dimensional global chemistry-transport
model study [7], with input variables as the concentrations of 4 precursors: H2O, CO,
NOx and O3 (the other three input variables were fixed) and two output variables: P

and D. When the variables other than chemistry (i.e., month, latitude and altitude) are
included as input variables, the accuracy of the second order Cut-HDMR was not sat-
isfactory. In this paper, we will show that mp-Cut-HDMR can provide much better
accuracy. In the following example, 5 input variables (month and 4 precursor concentra-
tions: H2O, CO, NOx , O3) with two output variables P and D are included. The input
variable of month can effectively account for the role of temperature on the chemical
rates of ozone production and destruction. The box is specified by 61.5◦S latitude and
990 mb pressure.

Second and third order Cut-HDMR’s were constructed for this 5 input and 2 out-
put variable model. The mp-Cut-HDMR component functions with m = 3, 4, 5 were
also constructed. The Cut-HDMR and mp-Cut-HDMR tables use the same ranges and
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Table 2
The variable ranges and meshes of Cut-HDMR and mp-Cut-HDMR tables.

Mesh Range

spacing Lower limit Upper limit

Month 1 1 12
Relative humidity (%) 5 5 100
CO (ppb) 10 10 200
NOx (ppt) 50 50 750
O3 (ppb) 10 10 150

Table 3
Comparison of the accuracy for Cut-HDMR and mp-Cut-HDMR.a

Relative error

1% 5% 10%

P D P D P D

2nd Cut-HDMR 18 24 44 50 59 63

2nd Cut-HDMR +
3rd mp-Cut-HDMR 47 70 75 90 84 95
3rd, 4th mp-Cut-HDMR 65 81 87 95 92 98
3rd, 4th, 5th mp-Cut-HDMR 67 82 87 95 92 98

3rd Cut-HDMR 55 76 80 92 88 96

3rd Cut-HDMR +
4th mp-Cut-HDMR 75 88 93 97 96 99
4th, 5th mp-Cut-HDMR 77 89 93 97 97 99

a The percentage of data with relative error not larger than a given value. The
results of mp-Cut-HDMR are obtained by using equation (45).

sampling meshes for all input variables shown in table 2. The reference points a and b
are chosen as follows:

a = {6, 65, 120, 450, 70}, b = {9, 35, 60, 200, 40}. (50)

Point a is near the middle of the domain and point b is arbitrarily picked.
A set of 25,600 exact data obtained by solving the differential equations of

the box model was compared to the approximate solutions given by Cut-HDMR and
mp-Cut-HDMR. The test data were constructed by using the ranges listed in ta-
ble 2, and some of the meshes used to construct the test data are larger, but all
are contained in the meshes of table 2. Thus, there is no interpolation error when
Cut-HDMR and mp-Cut-HDMR look-up tables are used. All the errors of Cut-HDMR
and mp-Cut-HDMR come from the expansion truncation inherent with the method. For
comparison, the percentages of the test data with relative errors not larger than 1, 5 and
10% for the two methods are shown in table 3.

From table 3, one can see that the accuracy of the second order Cut-HDMR is
quite poor; only 44% and 50% of the data for chemical ozone production and destruc-
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Table 4
The comparison between input data table sizes of Cut-HDMR and mp-Cut-HDMR.

Relative size

To 2nd Cut-HDMR To 3rd Cut-HDMR

2nd Cut-HDMR 1.000 0.035
2nd Cut-HDMR +

3rd mp-Cut-HDMR 4.033 0.143
3rd, 4th mp-Cut-HDMR 7.015 0.249
3rd, 4th, 5th mp-Cut-HDMR 8.000 0.284

3rd Cut-HDMR 28.189 1.000
3rd Cut-HDMR +

4th mp-Cut-HDMR 31.171 1.106
4th, 5th mp-Cut-HDMR 32.156 1.141

tion rates have relative error less than 5%. However, the combination of the second order
Cut-HDMR with the third and fourth, or the third, fourth and fifth order mp-Cut-HDMR
component functions have 87%, 95% data for chemical ozone production and destruc-
tion rates, respectively. The accuracy has been dramatically improved. The results are
even better than the accuracy of the third order Cut-HDMR while the table sizes (i.e.,
the number of model runs necessary to determine the mp-Cut-HDMR) are only about
1/4 of the third order Cut-HDMR table (see table 4). The same tendency can be found
for other relative errors.

The behavior in table 3 also reflects the orthogonality of the mp-Cut-HDMR com-
ponent functions with different order m. In the appendix, we only prove that the compo-
nent functions of mth (i.e., (l+1)th) order mp-Cut-HDMR are orthogonal to one another,
and to all component functions of lth order Cut-HDMR. When the lth order Cut-HDMR
are approximately represented as the combination of the second order Cut-HDMR and
the third to lth order mp-Cut-HDMR component functions, the mutual orthogonality be-
tween all the functions of second order Cut-HDMR and different order mp-Cut-HDMR
has not been proved, yet. They may not be exactly mutually orthogonal. However, the
results in table 3 show that the accuracy is always improved whenever a higher order
mp-Cut-HDMR component function is added, i.e., they appear to be mutually orthog-
onal. Moreover, compared to m = 5, the mp-Cut-HDMR component functions with
m = 3, 4 add more one- and two-dimensional invariant ranges (see table 1) in this 5 input
variable model, they improve the accuracy more. These results show that higher order
component functions of Cut-HDMR are effectively approximated by mp-Cut-HDMR
component functions.

The accuracy for both Cut-HDMR and mp-Cut-HDMR can depend on the choice
of the reference points a and b. As a simple test of this issue, we interchanged a and b,
and the results are given in table 5.

The point a is located near the center of the domain for the 5 input variables. Thus,
the corresponding second order Cut-HDMR has a better accuracy compared to using b
as the reference point. However, interchanging the a and b does not change the tendency
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Table 5
The comparison of the accuracy for Cut-HDMR and mp-Cut-HDMR.a

Relative error

1% 5% 10%

P D P D P D

2nd Cut-HDMR 9 14 25 33 37 45

2nd Cut-HDMR +
3rd mp-Cut-HDMR 36 47 62 75 70 83
3rd, 4th mp-Cut-HDMR 50 69 74 88 79 94
3rd, 4th, 5th mp-Cut-HDMR 56 82 86 95 92 98

a The percentage of data with relative error not larger than a given value. The
points a and b are interchanged.

for improvement provided by mp-Cut-HDMR. Especially, when 3rd + 4th + 5th
mp-Cut-HDMR component functions are used, the accuracies are almost identical for
the two cases upon comparing tables 3 and 5. As the test system has dimension 5, the
third, fourth and fifth order mp-Cut-HDMR contains the approximations of all order
residuals rl(x) (l = 3, 4, 5). When the system dimension n is high, we may not approxi-
mate all order residuals by mp-Cut-HDMR. Only low order mp-Cut-HDMR component
functions (l � n) are practical for construction, and the proper choice of a and b can be
important.

4. Conclusions

This paper presents a monomial based approach to approximately represent
the high order component functions of Cut-HDMR. The operating formulas of
mp-Cut-HDMR are similar to the lower order component functions of Cut-HDMR
with monomial multipliers. The resultant approximate expressions of the higher order
component functions are then added to the original truncated lower order Cut-HDMR.
The accuracy is guaranteed to improve because the new functions are produced by
projectors which are mutually orthogonal including to the original projectors generat-
ing the truncated lower order Cut-HDMR. The amount of data needed to generate the
mp-Cut-HDMR component functions is much smaller than that required for higher order
Cut-HDMR, and the mp-Cut-HDMR gives better accuracy.

A subsystem with five input and two output variables of a photochemical box
model was used for illustration of mp-Cut-HDMR. The mp-Cut-HDMR dramatically
improves the accuracy of the lower order Cut-HDMR. The accuracy was shown to al-
ways improve whenever a higher order mp-Cut-HDMR component function is added.
The combination of the second order Cut-HDMR with the third and fourth, or the third,
fourth and fifth order mp-Cut-HDMR component functions has an accuracy even better
than the third order Cut-HDMR, but the amount of data needed is only ∼1/4 of that re-
quired by the third order Cut-HDMR. These results show that higher order component
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functions of Cut-HDMR are effectively approximated by mp-Cut-HDMR component
functions.

The orthogonality of the mp-Cut-HDMR component functions is the key to its
success. Their orthogonality comes from two factors. First, the expansion terms for
hlI (xI , aI ) are related to the sum of all the terms in the Taylor series of f (x) involving
the variables xi1 , xi2 , . . . , xim . This guarantees that all the expansion terms of hlI (xI , aI )
do not overlap one another for different I and m, and as well as do not overlap with all
the terms producing the lower order Cut-HDMR. This is a basis for all the component
functions of mp-Cut-HDMR being produced by mutually orthogonal projectors.

Monomial based preconditioning also has special orthogonality features. If the ex-
pansion of hlI (xI , aI ) is exact, the division and multiplication of

∏m
s=1(xis − ais ) will

cancel each other, and the expansion is equivalent to the expansion of rl(xI , aI ). Al-
though the expansion of rl(xI , aI ) is truncated, nevertheless it is a good approximate
representation of rl(xI , aI ). If we directly expand rl(xI , aI ) to second order Cut-HDMR,
these terms are not orthogonal to the component functions of lth order Cut-HDMR.
For instance, when x = {xi, ai}, and f0(a) + fi(xi, ai ) gives the exact solution for
f (xi, ai ), then the other terms should be zero. Unfortunately, f̄0 in the direct expansion
of rl(xI , aI ) is a constant and never vanishes. However,

∏m
s=1(xis − ais ) will make f̃0

vanish if mp-Cut-HDMR is used because
∏m

s=1(xis − ais ) = 0 at {xi, ai}. The monomial∏m
s=1(xis − ais ) is not the only choice for this purpose. Other functions ϕ(xI ) can be

considered, but they must have roots at xis = ais (s = 1, 2, . . . , m).
The considerations underlying mp-Cut-HDMR are based on the existence of a

convergent Taylor series for f (x) around a single reference point a. mp-Cut-HDMR
provides approximations of the remaining terms after those corresponding to lth order
Cut-HDMR have been removed. The assumption behind this treatment is that the Tay-
lor expansion is convergent in the domain of x under consideration. If this assumption
is not satisfied, one can divide the domain into sub-domains. Within each sub-domain
a convergent Taylor series for f (x) may be constructed. If the lth order Cut-HDMR
does not have satisfactory accuracy in this sub-domain, then mp-Cut-HDMR may be
employed to improve the accuracy. For the whole domain there may be several Taylor
series of f (x) around distinct reference points in different sub-domains. We refer to this
method as multi Cut-HDMR. The key point for multi Cut-HDMR is that the projectors
corresponding to all sub-domains are mutually orthogonal so that the sum of all the pro-
jectors compose the maximal projectorM, andMf (x) gives the best approximation of
f (x) ∈ F in the whole domain. This perspective will be developed in future work.

Appendix

The treatment below will prove that the component functions generated by mth
order mp-Cut-HDMR are all produced by commutative projectors {℘̃} orthogonal to
all the original projectors of lth order Cut-HDMR and to one another. To simplify the
formulas, the subscripts ir , is may be replaced by i and j in the following proofs.
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The new operators {℘̃} of mp-Cut-HDMR contain the following terms:

m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
,

m∏
s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)
,

m∏
s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)
.

When more than n−m elements of x take on values of the corresponding elements of a,
then at least one case of xis = ais occurs either in the products

∏m
s=1(xis−ais )/(bis−ais ),∏m

s=1,is �=i(xis − ais )/(bis − ais ) and
∏m

s=1,is �=i,j (xis − ais )/(bis − ais ) or in the residual

functions of lth order Cut-HDMR rl(xi,bi
I , aI ) and rl(xi, xj ,bij

I , aI ). In this case, either
the products are zero, or the lth order residual vanishes because the lth order residual is
zero for all the points x with more than n − m elements taking on the corresponding
values of a. Then all the three terms vanish. This property will be implicitly used in the
following proofs.

A.1. Projection operator idempotency

We will prove that the operators ℘̃0 ℘̃i , (i = 1, 2, . . . , n) and ℘̃ij (1 � i < j � n)

defined in equations (33)–(35) for m = 3, 4, . . . , n possess the property of idempotency,
and hence they are projectors.

1. ℘̃0

℘̃0℘̃0f (x) = ℘̃0

[
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)]
. (A.1)

Notice that in equation (A.1) ℘̃0 acts on
∏m

s=1[(xis − ais )/(bis − ais )]rl(bI , aI ) which is
the function f (x) in equation (33). Then using equation (20) a new rl(bI , aI ) should be
calculated for f (x) = ∏m

s=1[(xis − ais )/(bis − ais )]rl(bI , aI ). Considering the property
mentioned at the beginning of the appendix, all the terms except the first one of the new
rl(bI , aI ) have more than n−m coordinates taking on the corresponding values of a and
then they vanish. Thus, we have

℘̃0℘̃0f (x) =
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

) = ℘̃0f (x). (A.2)

As f (x) is arbitrary, this implies that

℘̃0℘̃0 = ℘̃0. (A.3)



20 G. Li et al. / High dimensional model representations

2. ℘̃i

℘̃i ℘̃if (x) = ℘̃i

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)]
. (A.4)

Similarly, ℘̃i acting on each of the two terms gives

℘̃i℘̃if (x)=
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)
−

m∏
s=1,is �=i

xis − ais

bis − ais

[
xi − ai

bi − ai
rl
(
bI , aI

)]+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)
= ℘̃if (x). (A.5)

Here the relation
m∏

s=1,is �=i

xis − ais

bis − ais

(
xi − ai

bi − ai

)
=

m∏
s=1

xis − ais

bis − ais
(A.6)

was used. This implies that

℘̃i℘̃i = ℘̃i . (A.7)

In the proof we had an additional result from the last term of equation (A.4)

℘̃i

m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

) = ℘̃i ℘̃0f (x) = 0, (A.8)

i.e.,

℘̃i℘̃0 = 0. (A.9)

3. ℘̃ij

Following the same procedure we have

℘̃ij ℘̃ij f (x)= ℘̃ij

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)

−
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1,is �=j

xis − ais

bis − ais
rl
(
xj ,bj

I , aI
)

+
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)]
. (A.10)
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Using equation (35) we will treat each term in above equation one-by-one.

℘̃ij

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

=
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)− m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)

−
m∏

s=1,is �=j

xis − ais

bis − ais
rl
(
xj ,bj

I , aI
)+ m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)
= ℘̃ij f (x). (A.11)

℘̃ij

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)]

=
m∏

s=1,is �=i,j

xis − ais

bis − ais

[
xj − aj

bj − aj
rl
(
xi,bi

I , aI
)]− m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)

−
m∏

s=1,is �=j

xis − ais

bis − ais

[
xj − aj

bj − aj
rl
(
bI , aI

)]+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)

−
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

) = 0. (A.12)

Here the relation

m∏
s=1,is �=i,j

xis − ais

bis − ais

(
xj − aj

bj − aj

)
=

m∏
s=1,is �=i

xis − ais

bis − ais
(A.13)

and equation (A.6) were used. Similarly, we have

℘̃ij

[
m∏

s=1,is �=j

xis − ais

bis − ais
rl
(
xj ,bj

I , aI
)] = 0. (A.14)

Finally, we have

℘̃ij

[
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)]
= ℘̃ij ℘̃0f (x)
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=
m∏

s=1,is �=i,j

xis − ais

bis − ais

[
(xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]

−
m∏

s=1,is �=i

xis − ais

bis − ais

[
xi − ai

bi − ai
rl
(
bI , aI

)]− m∏
s=1,is �=j

xis − ais

bis − ais

[
xj − aj

bj − aj
rl
(
bI , aI

)]

+
m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)− rl
(
bI , aI

)+ rl
(
bI , aI

)] = 0. (A.15)

Here the relation
m∏

s=1,is �=i,j

xis − ais

bis − ais

[
(xi − ai)(xj − aj )

(bi − ai)(bj − aj )

]
=

m∏
s=1

xis − ais

bis − ais
(A.16)

and equation (A.6) were used.
Alltogether, we have

℘̃ij ℘̃ij f (x) = ℘̃ij f (x), (A.17)

i.e.,

℘̃ij ℘̃ij = ℘̃ij . (A.18)

As the second and the last terms, and the last two terms in equation (A.10) comprise
℘̃if (x) and ℘̃jf (x), we have additionally

℘̃ij ℘̃i = ℘̃ij ℘̃j = ℘̃ij ℘̃0 = 0. (A.19)

The above demonstrations collectively prove that the set of operators ℘̃0, ℘̃i and ℘̃ij are
projectors.

A.2. Projection operator orthogonality

A.2.1. Orthogonality of {℘̃} within each I

1. ℘̃0

In appendix A.1 we obtained ℘̃ij ℘̃0 = ℘̃i℘̃0 = 0. Now, we only need to prove that
℘̃0℘̃ij = ℘̃0℘̃i = 0.

℘̃0℘̃ij f (x)= ℘̃0

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)− m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)

−
m∏

s=1,is �=j

xis − ais

bis − ais
rl
(
xj ,bj

I , aI
)+ m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)]



G. Li et al. / High dimensional model representations 23

=
m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)− rl
(
bI , aI )+ rl(bI , aI

)] = 0.

℘̃0℘̃if (x)= ℘̃0

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)]

=
m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)] = 0. (A.20)

Then we have

℘̃0℘̃ij = ℘̃ij ℘̃0 = 0, (A.21)

℘̃0℘̃i = ℘̃i ℘̃0 = 0. (A.22)

2. ℘̃i

We only need to prove that ℘̃i ℘̃j = ℘̃j ℘̃i = ℘̃i℘̃ij = ℘̃i℘̃jk = ℘̃jk℘̃i = 0.

℘̃j ℘̃if (x)= ℘̃j

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− f̃0

]

= ℘̃j

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)]− ℘̃j ℘̃0f (x)

= ℘̃j

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)]

=
m∏

s=1,is �=j

xis − ais

bis − ais

[
xj − aj

bj − aj
rl
(
bI , aI

)]− m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)] = 0. (A.23)

Thus, we have

℘̃j ℘̃i = 0. (A.24)

As i and j are symmetric in the formula, we also have

℘̃i℘̃j = 0, (A.25)

i.e.,

℘̃j ℘̃i = ℘̃i℘̃j = 0. (A.26)

℘̃i℘̃ij f (x)= ℘̃i

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)− f̃i − f̃j − f̃0

]
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= ℘̃i

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

− ℘̃i ℘̃if (x)− ℘̃i℘̃jf (x)− ℘̃i℘̃0f (x)

= ℘̃i

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]− ℘̃if (x)

=
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

)
−

m∏
s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)+ m∏

s=1

xis − ais

bis − ais
rl
(
bI , aI

) = 0.

(A.27)

Combining equation (A.19) we have

℘̃i ℘̃ij = ℘̃ij ℘̃i = 0. (A.28)

℘̃i ℘̃jkf (x)= ℘̃i

[
m∏

s=1,is �=j,k

xis − ais

bis − ais
rl
(
xj , xk,bjk

I , aI
)− f̃j − f̃k − f̃0

]

= ℘̃i

[
m∏

s=1,is �=j,k

xis − ais

bis − ais
rl
(
xj , xk,bjk

I , aI
)]

− ℘̃i ℘̃jf (x)− ℘̃i℘̃kf (x)− ℘̃i ℘̃0f (x)

= ℘̃i

[
m∏

s=1,is �=j,k

xis − ais

bis − ais
rl
(
xj , xk,bjk

I , aI
)]

=
m∏

s=1,is �=i

xis − ais

bis − ais

[
xi − ai

bi − ai
rl
(
bI , aI

)]− m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)] = 0. (A.29)

℘̃jk℘̃i f (x)= ℘̃jk

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)− f̃0

]

= ℘̃jk

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)]− ℘̃jk℘̃0f (x)

= ℘̃jk

[
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)]
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=
m∏

s=1,is �=j,k

xis − ais

bis − ais

[
(xj − aj )(xk − ak)

(bj − aj )(bk − ak)
rl
(
bI , aI

)]

−
m∏

s=1,is �=j

xis − ais

bis − ais

[
xj − aj

bj − aj
rl
(
bI , aI

)]

−
m∏

s=1,is �=k

xis − ais

bis − ais

[
xk − ak

bk − ak
rl
(
bI , aI

)]+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)− rl
(
bI , aI

)+ rl
(
bI , aI

)] = 0.

(A.30)

Then we have

℘̃i ℘̃jk = ℘̃jk℘̃i = 0. (A.31)

3. ℘̃ij

We only need to prove that ℘̃ik℘̃ij = ℘̃kl℘̃ij = 0.

℘̃ik℘̃ij f (x)= ℘̃ik

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)− f̃i − f̃j − f̃0

]

= ℘̃ik

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

− ℘̃ik℘̃if (x)− ℘̃ik℘̃j f (x)− ℘̃ik℘̃0 f (x)

= ℘̃ik

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

=
m∏

s=1,is �=i,k

xis − ais

bis − ais

[
xk − ak

bk − ak
rl
(
xi,bi

I , aI
)]

−
m∏

s=1,is �=i

xis − ais

bis − ais
rl
(
xi,bi

I , aI
)

−
m∏

s=1,is �=k

xis − ais

bis − ais

[
xk − ak

bk − ak
rl
(
bI , aI

)]+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1,is �=i

xis − ais

bis − ais

[
rl
(
xi,bi

I , aI
)− rl

(
xi,bi

I , aI
)]

−
m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)] = 0. (A.32)
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Similarly, we have

℘̃ij ℘̃ikf (x) = 0. (A.33)

Then

℘̃ij ℘̃ik = ℘̃ik℘̃ij = 0. (A.34)

℘̃kl℘̃ij f (x)= ℘̃kl

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)− f̃i − f̃j − f̃0

]

= ℘̃kl

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

− ℘̃kl℘̃if (x)− ℘̃kl℘̃jf (x)− ℘̃kl℘̃0f (x)

= ℘̃kl

[
m∏

s=1,is �=i,j

xis − ais

bis − ais
rl
(
xi, xj ,bij

I , aI
)]

=
m∏

s=1,is �=k,l

xis − ais

bis − ais

[
(xk − ak)(xl − al)

(bk − ak)(bl − al)
rl
(
bI , aI

)]

−
m∏

s=1,is �=k

xis − ais

bis − ais

[
xk − ak

bk − ak
rl
(
bI , aI

)]

−
m∏

s=1,is �=l

xis − ais

bis − ais

[
xl − al

bl − al
rl
(
bI , aI

)]+ m∏
s=1

xis − ais

bis − ais
rl
(
bI , aI

)
=

m∏
s=1

xis − ais

bis − ais

[
rl
(
bI , aI

)− rl
(
bI , aI

)− rl
(
bI , aI

)+ rl
(
bI , aI

)] = 0.

(A.35)

Similarly, we have

℘̃ij ℘̃klf (x) = 0. (A.36)

Then

℘̃ij ℘̃kl = ℘̃kl℘̃ij = 0. (A.37)

The proofs above show that all the projectors {℘̃} within each I are mutually orthogonal.

A.2.2. Orthogonality between {℘̃} in different I
Suppose we have two subsets I and J of {1, 2, . . . , n} for a given m such that

I �= J , and two sets of new projectors {℘̃} and {℘̌} are defined on I and J , respectively.
As at least one variable xis ∈ I , say xs , does not belong to J , then xs = as in ℘̌t [℘̃sf (x)],
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which make it vanish because the condition given at the beginning of the appendix is
satisfied. Thus,

℘̌t

[
℘̃sf (x)

] = 0. (A.38)

Similarly,

℘̃s

[
℘̌tf (x)

] = 0. (A.39)

Then we have

℘̌t ℘̃s = ℘̃s℘̌t = 0. (A.40)

This shows that all of the projectors {℘̃} for a given m but in different I are mutually
orthogonal.

A.2.3. Orthogonality between {℘̃} and {℘}
As projectors {℘} of the lth order Cut-HDMR have an order equal to or less than l,

and {℘̃} has m = l + 1, then

℘r℘̃sf (x) = 0 (A.41)

because some xis = ais (is ∈ I ) which satisfies the condition given at the beginning of
the appendix.

Moreover, we also have

℘̃s℘rf (x) = 0 (A.42)

because each term of ℘rf (x) is a function of l or less input variables. Its lth or-
der Cut-HDMR expansion is exact and the corresponding residual is zero. Thus,
℘̃s℘rf (x) = 0. Then we have

℘r℘̃s = ℘̃s℘r = 0. (A.43)

Thus, all projectors {℘̃} for a given m and all projectors {℘} of the lth order Cut-HDMR
are mutually orthogonal.

A.3. Invariance property

We will prove that f (xi1 , xi2 , . . . , xis , ai1i2...is ) (s = 1, 2, . . . , l), f (xi,bi
I , aI ) and

f (xi, xj ,bij

I , aI ) (i, j ∈ I ) are invariant to the maximal projector M in equation (43).
Notice that

f (x)− rl(x)= f0 +
n∑

i=1

fi +
∑

1�i<j�n
fij + · · ·

+
∑

1�i1<···<il�n
fi1i2...il . (A.44)

Then equation (43) can be rewritten as
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Mf (x)= f (x)− rl(x)+
∑
I

[
f̃0 +

m∑
s=1

f̃is +
∑

1�r<s�m
f̃ir is

]

= f (x)− rl(x)+
∑
I

[
m∏
t=1

xit − ait

bit − ait
rl
(
bI , aI

)
+

m∑
s=1

(
m∏

t=1,it �=is

xit − ait

bit − ait
rl
(
xis ,bis

I , aI
)− m∏

t=1

xit − ait

bit − ait
rl
(
bI , aI

))

+
∑

1�r<s�m

(
m∏

t=1,it �=ir ,is

xit − ait

bit − ait
rl
(
xir , xis ,bir is

I , aI
)

−
m∏

t=1,it �=ir

xit − ait

bit − ait
rl
(
xir ,bir

I , aI
)− m∏

s=1,it �=is

xit − ait

bit − ait
rl
(
xis ,bis

I , aI
)

+
m∏
t=1

xit − ait

bit − ait
rl
(
bI , aI

))]
. (A.45)

The determination of the quantitiesM f (xi1 , xi2 , . . . , xis , ai1i2...is ),M f (xi,bi
I , aI ) and

M f (xi, xj ,bij

I , aI ) is achieved by simply substituting the corresponding coordinates
{xi1 , xi2 , . . . , xis , ai1i2...is }, {xi,bi

I , aI } and {xi, xj ,bij

I , aI } into equation (A.45).

1. f (xi1 , xi2 , . . . , xis , ai1i2...is )
Considering the condition mentioned at the beginning of the appendix, we have

Mf
(
xi1 , xi2 , . . . , xis , ai1i2...is

)
= f

(
xi1 , xi2 , . . . , xis , ai1i2...is

)− 0+
∑
I

(
0+

m∑
s=1

0+
∑

1�r<s�m
0

)
= f

(
xi1 , xi2 , . . . , xis , ai1i2...is

)
. (A.46)

2. f (xi,bi
I , aI )

Notice that all ℘̌tf (xi,bi
I , aI ) = 0 where ℘̌t belong to J (J �= I ). This is

valid because the condition given at the beginning of the appendix is satisfied. Then
for f (xi,bi

I , aI ), equation (A.45) becomes

Mf
(
xi,bi

I , aI
)= f

(
xi,bi

I , aI
)− rl

(
xi,bi

I , aI
)+ xi − ai

bi − ai
rl
(
bI , aI

)
+ rl

(
xi,bi

I , aI
)− xi − ai

bi − ai
rl
(
bI , aI

)
+

m∑
s=1,is �=i

[
xi − ai

bi − ai
rl
(
bI , aI

)− xi − ai

bi − ai
rl
(
bI , aI

)]
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+
m∑

s=1,is �=i

[
rl
(
xi,bi

I , aI
)− rl

(
xi,bi

I , aI
)

− xi − ai

bi − ai
rl
(
bI , aI

)+ xi − ai

bi − ai
rl
(
bI , aI

)]
+

∑
1�r<s�m,ir ,is �=i

[
xi − ai

bi − ai
rl
(
bI , aI

)− xi − ai

bi − ai
rl
(
bI , aI

)
− xi − ai

bi − ai
rl
(
bI , aI

)+ xi − ai

bi − ai
rl
(
bI , aI

)]
= f

(
xi,bi

I , aI
)
. (A.47)

3. f (xi, xj ,bij

I , aI )
Similarly to the treatment above, we have

Mf (xi, xj ,bij

I , aI )

= f
(
xi, xj ,bij

I , aI
)− rl

(
xi, xj ,bij

I , aI
)

+ (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)+ xj − aj

bj − aj
rl
(
xi,bi

I , a
)

− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)+ xi − ai

bi − ai
rl
(
xj ,bj

I , aI
)

− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)
+

m∑
s=1,is �=i,j

[
(xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]

+
[
rl
(
xi, xj ,bij

I , aI
)− xj − aj

bj − aj
rl
(
xi,bi

I , aI
)

− xi − ai

bi − ai
rl
(
xj ,bj

I , aI
)+ (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]
+

m∑
s=1,is �=i,j

[
xj − aj

bj − aj
rl
(
xi,bi

I , aI
)− xj − aj

bj − aj
rl
(
xi,bi

I , aI
)

− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)+ (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]
+

m∑
s=1,is �=i,j

[
xi − ai

bi − ai
rl
(
xj ,bj

I , aI
)− xi − ai

bi − ai
rl
(
xj ,bj

I , aI
)

− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)+ (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]
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+
∑

1�r<s�m,ir ,is �=i,j

[
(xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)
− (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)+ (xi − ai)(xj − aj )

(bi − ai)(bj − aj )
rl
(
bI , aI

)]
= f

(
xi, xj ,bij

I , aI
)
. (A.48)

The analysis above proves that f (xi1 , xi2 , . . . , xis , ai1 i2...is ) (s = 1, 2, . . . , l),
f (xi,bi

I , aI ) and f (xi, xj ,bij

I , aI ) (i, j ∈ I ) are invariant to the maximal projectorM
in equation (43).
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